
General announcements



A cool example of a Wave – Mt Tavurvur 
Volcano

Video credit: Phil McNamara



We saw in that video (and you know in real life) that light waves travel more 
quickly than sound waves.  All waves travel one wavelength in one period – if 
we divide those values, it gives us a wave velocity!

Instead of period, we often know frequency.  As 𝑇 = !
"
, substitution into the 

above relationship yields the general expression:

This is known as the wave velocity equation, and it holds true for all types of 
waves. For a wave in a given medium, the velocity is constant – if the medium 
changes, so will velocity.

Wave velocity

λ
T
= velocity in m/s

𝒗 = 𝝀𝝂
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What happens when waves interact?
When two waves meet, for an instant their energies combine to form a new wave

– The combination is only for the instant during which both occupy the same 
point—afterward, each individual wave continues on its way 

Destructive interference results 
in a smaller amplitude than 
either wave alone

Constructive interference 
creates a greater amplitude 
than either wave alone
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How about when waves hit a boundary?
Questions to ponder as we play with waves on a rope…

If I shake a rope that is attached to a fixed point (e.g. a wall), what happens 
when the wave pulse hits that fixed point?

What happens if I keep jiggling the rope randomly and allowing the pulses to 
bounce back?

What happens if I jiggle the rope at just the right frequency? How about at 
faster frequencies?
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Standing waves
Under the right conditions, the bouncing waves will superimpose in an orderly 
fashion, almost seeming to “stand still” on the rope. This is called a standing wave.

http://web.utk.edu/~cnattras/Physics221Spring2013/modules/m10/images/stand.gif

A standing wave’s anatomy is 
described by “nodes” (areas of no 
motion) and “antinodes” (areas of 
maximum motion).

If the frequency of the force 
causing the system to vibrate 
matches one of the natural 
frequencies of the system, the 
resulting superposition will produce 
a standing wave.

6.)

The “right conditions” are, essentially, those of resonance (though having reson-
ance does not guarantee a standing wave--a kid on a swing experiences resonance 
when the parent pushes but a standing wave doesn’t come with that situation).



How do standing waves work?
What observations do we have to help determine what kind of a standing 
wave will be produced for a system? Let’s recap what we know so far:

1.)  A wave is traditionally characterized by its frequency 𝜈, its wavelength 𝜆 and its wave 
velocity v.

v (meters/second)

λ (meters/cycle)

ν (cycles passing
  by per second)

2.)  The relationship between these three parameters is:

v = λ ν.
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3.)  That means that if we know the wave velocity, and if we can determine 
the “appropriate wavelength” for a given situation, we can determine the 
frequency of the wave and, hence, the frequency our force must vibrate at to 
generate a standing wave.

4.)  So how to get the “appropriate wavelength” for a given system?

NOTICE: In all three cases, the end-point constraints are met (that is, they ALL 
have nodes at both ends of their respective wavelengths).

Let’s look at our rope situation.  What constraint must be satisfied by our 
“appropriate wavelength”?  

It better have a node (a “fixed” point) at each end, as each end is tied to 
a rigid structure and can’t move.  What kind of wave will do that?  Three 
are shown below.
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5.)  This is all fine and dandy, but how does it help with our problem?  It helps 
because we know that the span between the ends is a fixed distance “L.” All we 
have to do it link “L” to the wavelengths viewed, and we have the wavelengths in 
terms of a know quantity.  Specifically:

a.)  For the first situation:  We know “L,” so the question is, “How many 
wavelengths are in “L?”

L

Looking at the wave, we can see that there are two quarter-wavelengths ( ⁄# $) in L 
(sounds obscure—you’ll get used to it).  That is, we can write: 

L = 2 λ
4( )

   ⇒    λ = 2L.

9.)



6.) Assuming we know the wave velocity (this would normally be given), we can 
write:

7.)  So let’s say the wave velocity is 3 m/s and the length of the rope is 2 
meters.  That means: 

v = λ ν
  = 2L( )ν

  ⇒    ν = v
2L

ν =
v

2L

  =
3 m/s( )

2 2 m( )
  ⇒    ν = .75 sec−1   (this unit is the same as a Hertz, Hz)
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8.)  Apparently, if we jiggle the rope at .75 Hz, we will get a standing wave on the 
rope that, over time, looks like:

9.)  We could do a similar bit of analysis for the other two waveforms.  

10.)  ONE OTHER THING:  If there had been any internal constraints—if, for 
instance, we had pinched the rope at L/2 making that point a node, then our 
waveform wouldn’t have worked (look at it—there is an anti-node—an extreme—
at L/2) and we would have had to have done a bit more thinking (you’ll see 
examples of this in class).
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Standing wave behavior
In general, what procedure should we follow when tackling these types of 
problems?

a.) identify the end-point restraints.  This means figuring out whether there are 
nodes or antinodes at the ends.
b.) On a sine wave, identify what the waveform looks like.
c.) Once you know what the waveform should look like, be sure that any 
internal constraints imposed on the system are met by the waveform.  
d.) When satisfied, ask the question, “How many quarter-wavelength are there 
in L?” Put a little differently, fill in the ? in the expression:

e.) Solve for 𝜆 in terms of L, then use 𝑣 = 𝜆𝜈 to get the required frequency.

?( ) λ
4( ) = L
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Pipe closed at one end

1.) Consider a pipe of length L closed at one end.  
What frequency of sound will stand in the pipe? 

à In a problem like this, the first thing you have to 
do is identity what standing waves will fit in the pipe.  
To do that, you have to begin by identifying the end-
point constraints. 

à For a pipe closed at one end, the end-point 
constraints dictate an anti-node at the open end 
and a node at the closed end. 

Another example of a standing wave is the waveform that 
is generated when air is piped through a tube. 
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Pipe closed at one end
à The waveforms that fit the bill are shown 
below, then reproduced in the vertical: 

anti-nodenode

1st  waveform

anti-node

3rd  waveform

anti-node

2nd  waveform
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Pipe closed at one end

5.) If we ask the question, “How many 
wavelengths are there in “L?” (That is, we need 
to complete the phrase ”? 𝜆 = 𝐿”

Minor Note: In real life, the effective length of the tube has to be altered due to perturbation 
effects at the ends.  In the case of a singly open tube, the effective length of the tube isn’t “L”
but rather “L+.4d,” where “d” is the tube’s diameter.  If open at each end, it’s “L+.8d.”

4.) Each section of wave has a numerical length equal 
to the length of the tube, or “L.”

1
4
λ1 = L

   ⇒    λ1 = 4L

By examination, there is ONE quarter-
wavelength in “L,” so we can write:
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v = λ1ν1

   ⇒    ν1 =
v
λ1

   ⇒    ν1 =
v

4L

   ⇒    ν1 =
(330 m/s)

4(2 m)
   ⇒    ν1 = 41.25 Hz

7.) Put a 41.25 Hz tuning fork at the mouth of our tube and it will howl quite loudly.

6.) We know the speed of sound in air is 
approximately 330 m/s and we know the 
relationship between a wave’s velocity and its 
wavelength and frequency is v = λ𝜈.  Assuming
the tube’s length is 2 meters (and ignoring the 
radius correction mentioned at the bottom of the 
previous page), we can write: 

16.)



8.) Doing the same calculation for the second 
situation where there is three-quarter of a wave 
in “L,” we can write: 

v = λ2ν2

   ⇒    ν2 =
v
λ2

   ⇒    ν2 =
v

4
3( )L

   ⇒    ν2 =
(3)(330 m/s)

4(2 m)
   ⇒    ν2 = 123.75 Hz

9.) Put a 123.75 Hz tuning fork at the mouth of our tube and it will howl quite loudly.
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10.) Doing the same calculation for the third 
situation where there is five-quarters of a wave 
in “L,” we can write: 

v = λ3ν3

   ⇒    ν3 =
v
λ3

   ⇒    ν3 =
v

4
5( )L

   ⇒    ν3 =
(5)(330 m/s)

4(2 m)
   ⇒    ν3 = 206.25 Hz

11.) Put a 206.25 Hz tuning fork at the mouth of our tube and it will howl quite 
loudly.
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Pipe open at both ends

Consider a pipe of length “L” open at both ends.  What 
frequency of sound will stand in the pipe? 

à In a problem like this, the first thing 
you have to do is identity what standing 
waves will fit in the pipe.  To do that, you 
have to begin by identifying the end-point 
constraints. 

à For a pipe open at both ends, the end-point 
constraints dictate anti-nodes at the both ends. 
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On the sine wave presented below, you can 
see the waveforms that satisfy the end-point 
constraints.  Once determined, they can be 
put on the sketch to the right.
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Now we follow the same logic as before. 
Determine the relationship between 𝜆 and L 
and use 𝜈 = ⁄% # to determine the frequency 
for the given standing wave. Given the same 
information as for the closed pipe:

𝐿 =
1
2
𝜆! 𝐿 = 𝜆" 𝐿 =

3
2
𝜆#

𝜈! =
330 𝑚/𝑠

2𝐿
= 82.5 Hz

𝜈" =
330 𝑚/𝑠

𝐿
= 165 Hz

𝜈" =
330 𝑚/𝑠
2
3 𝐿

= 247.5 Hz
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Pipes and strings
You may have noticed that as more fractions of a wave were added inside 
the pipe, the frequency associated with that wave increased in a regular fashion 

– The same thing happens on a string, too! It follows a similar pattern to an open 
pipe.

The lowest frequency that will produce a standing wave in a pipe or on a string 
is called the fundamental frequency or first harmonic. This is the base “note” 
it will play

– Plucking or bowing an open string will make its first harmonic sound loudly 
(e.g. plucking the A string on a cello creates a 220 Hz sound)

– Blowing across the top of a pipe will play a characteristic sound too
The related frequencies above the fundamental are harmonics, which are 
related to the base frequency by the factors we found before
To change a note, you change the length of the string (by putting a finger 
down) or the length of the pipe (by opening/closing valves or holes), which
changes the fundamental frequency
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What’s really going on…
Sticking with a string instrument for now, when you pluck an open string, 
the fundamental frequency vibrates the loudest – but it’s not the only frequency 
resonating on that string!

– All the harmonics are also producing standing waves at the same time, and 
superimposing together to create one complex sound wave!

– This mix of frequencies gives the instrument its “timbre,” or characteristic 
sound (how we tell a cello from a ukulele, for example)
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Practice problem #1
A piccolo is .32 meters long and open at both ends.  

a.) What is the lowest frequency the piccolo can play if the speed of sound in air 
is 340 m/s?

b.) If the highest note the piccolo can sound is 4000 Hz, what must be the 
distance between adjacent antinodes?
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Solution – problem #1

With both ends acting like antinodes, the wave form associated 
with the lowest frequency will look like the form shown to the 
right.  In that case, there are two quarter-wavelengths in L.  That 
is:

Knowing the wave velocity, we can write:

a.) What is the lowest frequency the piccolo can play if the speed of sound in air 
is 340 m/s?
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The distance between antinodes is equal to half the wavelength of the 
wave in question.  At 4000 Hz, we can write:

Half this yields an antinode to antinode distance of .0425 meters, or 4.25 cm.

b.) If the highest note the piccolo can sound is 4000 Hz, what must be the 
distance between adjacent antinodes?
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Problem #2
A tunnel is 20,000 meters long.

a.) At what frequency can the air in the tunnel resonate?

b.) Would it be a good idea to honk a horn in tunnel like this?
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Solution – problem #2

The longest wavelength that can stand (highest frequency) looks 
like the form shown to the right.  The frequency associated with 
that is:

? λ
4( ) = L

   ⇒    2 λ
4( ) = L

   ⇒    λ = 2L = 2 2x104  m( ) = 4x104  m

vlowest = λν

   ⇒    ν = v
λ

   ⇒    ν = 340 m/s
4x104  m

   ⇒    ν = .0085 cycles/sec

So:

a.) At what frequency can the air in the tunnel resonate?
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Solution – problem #2

Our ears are sensitive to frequencies between 20 Hz and 20,000 Hz (assuming 
we haven’t messed them up by now).  Trillions of trillions of multiples 
of .0085 happen within those bounds.  In other words, just about any horn blast 
has the potential of resonating in a tunnel. 

The harmonics will be multiples of this “lowest frequency,” or:

νn = .0085 Hz( )n,

where “n” is any number from 1 to infinity.

b.) Would it be a good idea to honk a horn in tunnel like this?
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Problem #3
A copper bar of length L = 3 m is pinned in two places, ¼ L in from each end. 
The metal bar is struck and allowed to vibrate, and the primary frequency it 
produces is measured as 1230 Hz.

a.) Sketch the waveform corresponding to the lowest frequency that can 
stand on the bar (as we’ve done before).

b.) What’s the speed of sound in the copper bar?
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Solution – problem #3
a.) Sketch the waveform (as we’ve done before).

Usually you start with is a wave train:

In this case, you need antinodes at each end and two interior nodes at L/4 from 
each end.

The first two antinodes won’t do as there is only one interior node between them 
(see sketch).

Going to the third antinodes does include two nodes interior, and they happen to 
be in the right place . . . so there is our waveform.
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v = 𝜆𝜈 = 𝐿 𝜈 = 3 𝑚 1230 𝐻𝑧 = 3690 𝑚/𝑠

For another, slightly longer example, see Fletch’s video (zPoly30) linked on 
the calendar.

Fitting the waveform onto the bar (which you don’t have to do, but I’m 
doing for educational purposes), you can see how it fits . . . 

b.) What’s the speed of sound in the copper bar?
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